Gene Therapy

Gene Therapy

Gene therapy is a newer approach to treating diseases based on modifying a person’s genes toward a therapeutic goal. Gene therapy has been targeted towards treating lethal and disabling diseases. It also has potential of preventing diseases. This method of treatment is still in its infancy.
It can be said that the gene that we inherit from our parents influence practically every disease. A composite of approximately 150,000 individual genes constitutes a human being. Several years ago, an international effort was launched to identify every single human gene. This effort, called the Human Genome Project. Variation in the structure of a person’s genes collectively helps define us as individuals such as how tall we are to what color our eyes are supposed to have. Some of this genetic ‘miscalculations’ unfortunately leads to the development of disease. The genetics of many diseases are passed from one generation to the next by inheriting a single gene. An example is Huntingdon’s disease. Many other diseases and traits are influenced by a collection of genes.
The premise of gene therapy is to treat the disease at its root. There are two types of Gene Theapy. Somatic Gene Therapy and  Germline Gene Therapy.
Somatic gene therapy involves the manipulation of gene expression in cells that will be corrective to the patient but not inherited to the next generation.
Germline gene therapy, this involves the genetic modification of germ cells that will pass the change on to the next generation.
It is the Somatic Gene therapy that is being mainly investigated throughout the world. The work on Germline gene therapy is restricted due to technical and ethical reasons.
To deliver genetic material to the appropriate cells of the patient in a way that is specific, efficient and safe, gene delivery vehicles called vectors have been created. The vectors being used are modified and attenuated viruses. The virus is modified in such a way that its disease causing component is removed and in its place gene are inserted. Synthetic vectors are also being used formed of complexes of DNA, Protein and Lipids.
The first human trials of Gene therapy began in 1990. Many types of diseases are currently being investigated as candidates for gene therapy including cardiovascular diseases, cholesterol lowering therapy, infectious diseases such as AIDS, and cancer.
Gene therapy can be used not only in treating genetic diseases but also to deliver specific proteins. By placing genes in laboratory-cultured organisms that produce the proteins coded by those genes. Examples of such manufactured proteins include insulin, growth hormone, and erythropoietin, all of which must be injected frequently into the patient.
In hemophilia treatments, a gene-carrying vector could be injected into a muscle, prompting the muscle cells to produce Factor IX and thus prevent bleeding. This method would end the need for injections of Factor IX — a derivative of pooled blood products and a potential source of HIV and hepatitis infection. In gene therapies such as these, the introduced gene is always “on” so the protein is always being produced, possibly even in instances when it isn’t needed.

First human chromosome mapped

For the first time, scientists have mapped virtually an entire human chromosome, one of the chains of molecules that bear the genetic recipe for human life. The achievement was announced on Wednesday 1st Dec ’99. It was an important step for the $3 billion Human Genome Project, which is attempting to detail the tens of thousands of genes that carry instructions for everything in a human from brain function to hair color to foot size.
This is probably the most important scientific effort that mankind has ever mounted. That includes splitting the atom and going to the moon. In laying out the chemical instructions for life, scientists believe they are in the early stages of revolutionizing the study of human development and medicine. Already, researchers have begun testing several biological therapies that replace faulty genes or correct their misfirings to make cells work correctly. Such therapies, if they can be made reliable, would bring a more precise way to treat diseases without the sometimes debilitating side effects of conventional drugs.
The defects in the genes along the chromosome contribute to heart defects, immune system disorders, cancers, schizophrenia and mental retardation.

The human genetic pattern, or genome, is a biological map laying out the sequence of 3 billion pairs of chemicals that make up the DNA in each cell. All human DNA is contained within 23 pairs of chromosomes.

Genes are arrayed along chromosomes, the rod-shaped bodies inside the nucleus of a cell. Proteins and other compounds carry out the instructions of genes. Inside the chromosomes, genetic material is linked along tightly coiled strands of the master molecule DNA, which twists like a spiral ladder. Each rung is built with pairs of four chemical bases ordered in different numbers and combinations to form genes.

Mapping a gene is only an early step in understanding the gene’s function and how it might contribute to a particular disease.

Human Genome 
Genome Sequencing helps diagnosing rare disorder
Genome Editing

This entry was posted in Diseases & Conditions, Genetics, Medical Tidbits and tagged by Manbir & Gurpreet. Bookmark the permalink.

About Manbir & Gurpreet

Gurpreet Kaur’s journey in this world .... Gurpreet Kaur was a Musician. She was a singer and a composer of music. Her interest was composing and singing Gurbani Shabads in Indian Classical style. She sang Shabads in All the Raags mentioned in Sri Guru Granth Sahib Ji. She also taught Gurmat Sangeet at Gurmat Gian Missionary College, Jawadi, Ludhiana. Elder child to Pushpinder Kaur and Dr. Brig. Harminder Singh, was born in Amritsar on 13th Jan 1962. She attended various convent schools as a child because her father would get frequent Army postings as a dental surgeon. She graduated with Music Honors from Govt. College for Women, Chandigarh. Music was her hobby and she composed and sang Raag based Gurbani Shabads. Doing Kirtan was part of growing up nurtured by her parents. She learned music from her father Dr. Brigadier Harminder Singh who was a dental surgeon in Indian Army and a very good singer himself. Gurpreet’s Bhua (father’s sister), Ajit Kaur retied as a Head of Department of Music from Govt. College for Women Ludhiana, and was a renounced Punjabi singer of her time. Gurpreet Kaur also learned nuances of Indian Classical Music from Pandita Sharma. She was a mother of three children, and a grandmother. Her daughter Keerat Kaur is a Computer Engineer. Her two sons Gurkeerat Singh and Jaskeerat Singh are doctors in USA. Her daughter Keerat Kaur too was part of her group ~ Gurmat Gian Group. Gurpreet Kaur left this world at the age of 54yrs on 12th Sept 2016 in Baltimore USA. She had recorded around 25 cds of Gurbani Keertan. 'Raag Ratan' Album (6 CDs) is a Compilation of Shabads in All the 31 Sudh Raags of Sri Guru Granth Sahib Ji. 'Gauri Sagar' Album (3 CDs) is a Compilation of All forms of Raag Gauri in Sri Guru Granth Sahib Ji. 'Nanak Ki Malhaar' ~ ((3 CDs) is an album of Raag Malhar Shabads in various forms of Malhar. 'Gur Parsaad Basant Bana' ~ (3 CDs) is an album of Shabads in Raag Basant sung in various forms of Raag Basant. Har Ki Vadeyai Sarni Aayea Sewa Priya Kee Preet Piyaree Mohan Ghar Aavho Karo Jodariya Mo Kao Taar Le Raama Taar Le Tere Kavan Kavan Gun Keh Keh Gawan Mera Baid Guru Govinda Saajanrraa Mera Saajanrraa

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s